¿Los pollos en el nido del saltapared cola larga (Thryomanes bewickii) experimentan estrés térmico en cajas nido en una ciudad tropical?

Autores/as

  • Alberto Stefano Salgado-Amezcua Facultad de Biología, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, México https://orcid.org/0009-0008-2025-0425
  • José Leonel Molina Valladares Facultad de Biología, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, México
  • Miguel Angel Salinas-Melgoza Facultad de Biología, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, México / Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Michoacán, México https://orcid.org/0000-0003-3209-1659
  • Vicente Salinas-Melgoza Instituto Tecnológico del Valle de Morelia, Morelia, Michoacán, México https://orcid.org/0000-0002-5750-5523
  • Alejandro Salinas Melgoza Facultad de Biología, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, México https://orcid.org/0000-0003-2024-3061

DOI:

https://doi.org/10.28947/hrmo.2024.25.1.783

Palabras clave:

aves altriciales, ecología urbana, edad de endotermia, temperatura de crías en desarrollo, temperatura operativa

Resumen

Las áreas urbanas presentan ambientes térmicos que pueden ser un desafío para los pollos altriciales, particularmente durante el desarrollo temprano. Nuestro objetivo fue evaluar si los polluelos del reyezuelo altricial de Bewick (Thryomanes bewickii) experimentaron estrés térmico en cajas nido durante las etapas tempranas y tardías de su desarrollo. Determinamos el punto de ajuste termorregulador (rango termoneutral) de los polluelos, midiendo la temperatura corporal cloacal de cinco polluelos de tres nidos, cada dos días desde que eclosionan hasta que abandonaron el nido. También expusimos a los polluelos a un desafío térmico desde el día 5 para determinar la edad de la endotermia. Usamos registradores de datos para determinar el ambiente térmico dentro y fuera de tres cajas nido, y obtuvimos la temperatura operativa para los polluelos en la caja nido usando modelos impresos en 3D de polluelos correspondientes a etapa temprana y tardía de desarrollo. La temperatura ambiente dentro del nido fluctuó a lo largo del día, siendo más fría por la noche justo antes del amanecer (rango mínimo: 10.4 °C – 10.8 °C) y más calientes por la tarde (rango máximo: 25.8 °C – 28.3 °C). Sin embargo, las temperaturas en la caja nido no alcanzaron las temperaturas exteriores extremadamente altas y bajas, y fueron más cálidas durante la noche. Los pollos alcanzaron la edad de endotermia a los 9 ± 2.3 días después de la eclosión y mostraron un rango termoneutral de temperatura corporal por encima de la temperatura ambiente en el nido. La temperatura operativa de los modelos en la caja nido siguieron de cerca las temperaturas ambientales y estuvieron por debajo del rango termoneutral de los pollos. Por lo tanto, los pollos podrían experimentar estrés térmico cuando los padres no les brindan protección adicional mientras están fuera del nido para buscar alimento. Aunque las cajas nido brindan beneficios térmicos limitados para las aves que anidan en las ciudades tropicales, aún proporcionan valiosos sitios de anidación y descanso donde las cavidades naturales tienen una disponibilidad limitada.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andreasson F, Nilsson JÅ, Nord A. 2020. Avian reproduction in a warming world. Frontiers in Ecology and Evolution 8:576331 https://doi.org/10.3389/fevo.2020.576331

Andreasson F, Nord A, Nilsson JÅ. 2018. Experimentally increased nest temperature affects body temperature, growth and apparent survival in Blue Tit nestlings. Journal of Avian Biology 49:jav-01620. https://doi.org/10.1111/jav.01620

Ardia DR. 2013. The effects of nestbox thermal environment on fledging success and hematocrit in Tree Swallows. Avian Biology Research 6:99-103.

Archambault JM, Cope WG, Kwak TJ. 2014. Survival and behaviour of juvenile unionid mussels exposed to thermal stress and dewatering in the presence of a sediment temperature gradient. Freshwater Biology 59:601-613.

Arct A, Martyka R, Drobniak SM, Oleś W, Dubiec A, Gustafsson L. 2022. Effects of elevated nest-box temperature on incubation behaviour and offspring fitness-related traits in the Collared Flycatcher Ficedula albicollis. Journal of Ornithology 163:263-272.

Arnfield AJ. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology 23:1-26.

Baarendse PJJ, Debonne M, Decuypere E, Kemp B, Van den Brand H. 2007. Ontogeny of avian thermoregulation from a neural point of view. World's Poultry Science Journal 63:267-276.

Bakken GS. 1992. Measurement and application of operative and standard operative temperatures in ecology. American Zoologist 32:194-216.

Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Available at http://CRAN.R-project.org/package=lme4

Bicego KC, Barros RCH, Branco LGS. 2007. Physiology of temperature regulation: comparative aspects. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 147:616-639.

Blewett CM, Marzluff JM. 2005. Effects of urban sprawl on snags and the abundance and productivity of cavity-nesting birds. The Condor 107:678-693.

Bohler M, Chowdhury VS, Cline MA, Gilbert ER. 2021. Heat stress responses in birds: a review of the neural components. Biology 10:1095-1095. https://doi.org/10.3390/biology10111095

Choi IH, Bakken GS. 1990. Begging response in nestling Red-winged Blackbirds (Agelaius phoeniceus): effect of body temperature. Physiological Zoology 63:965-986.

Cockle KL, Martin K, Drever MC. 2010. Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biological Conservation 143: 2851-2857.

Corregidor-Castro A, Jones OR. 2021. The effect of nest temperature on growth and survival in juvenile Great Tits Parus major. Ecology and Evolution 11:7346-7353.

Corrigan RM, Scrimgeour GJ, Paszkowski C. 2011. Nest boxes facilitate local-scale conservation of common Goldeneye (Bucephala clangula) and Bufflehead (Bucephala albeola) in Alberta, Canada. Avian Conservation and Ecology 6: 1. http://dx.doi.org/10.5751/ACE-00435-060101

Cunnigham SJ. 2021. Mortality among birds and bats during an extreme heat event in eastern South Africa. Austral Ecology 46:687-691.

Dawson WR, Evans FC. 1957. Relation of growth and development to temperature regulation in nestling Field and Chipping Sparrows. Physiological Zoology 30:315-327.

Dunn EH. 1975. The timing of endothermy in the development of altricial birds. The Condor 77:288-293.

DuRant SE, Willson JD, Carroll RB. 2019. Parental effects and climate change: will avian incubation behavior shield embryos from increasing environmental temperatures? Integrative and Comparative Biology 59:1068-1080.

Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. 2022. Necrotic enteritis in Broiler Chickens: a review on the pathogen, pathogenesis, and prevention. Microorganisms 10:1958. https://doi.org/10.3390/microorganisms10101958

Guthery FS, Land CL, Hall BW. 2001. Heat loads on reproducing Bobwhites in the semiarid subtropics. Journal of Wildlife Management 65:111-117.

Haftorn S. 1988. Incubating female passerines do not let the egg temperature fall below the 'physiological zero temperature' during their absences from the nest. Ornis Scandinavica 19:97-110.

Harper MJ, McCarthy MA, Van der Ree R. 2005 The abundance of hollow-bearing trees in urban dry sclerophyll forest and the effect of wind on hollow development. Biological Conservation 122:181-192.

Hertz PE. 1992a. Evaluating thermal resource partitioning by sympatric lizards Anolis cooki and A. cristatellus: a field test using null hypotheses. Oecologia 90:127-136.

Hertz PE. 1992b. Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405-1417.

Hertz PE, Huey RB, Stevenson RD. 1993. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. American Naturalist 142:796-818.

IMPLAN 2022. Fichas temáticas Morelia. Retrieved from: https://implanmorelia.org/site/fichas-tematicas-morelia/ on 15 February 2023.

Kennedy ED, White DW. 2020. Bewick's Wren (Thryomanes bewickii), version 1.0. In Birds of the World (A. F. Poole, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.bewwre.01

Kingsolver JG, Diamond SE, Buckley LB. 2013. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology 27:1415-1423.

LaMontagne JM, Kilgour RJ, Anderson EC, Magle S. 2015. Tree cavity availability across forest, park, and residential habitats in a highly urban area. Urban Ecosystem 18:151-167. https://doi.org/10.1007/s11252-014-0383-y

Libois E, Gimenez O, Oro D, Mínguez E, Pradel R, Sanz-Aguilar A. 2012. Nest boxes: a successful management tool for the conservation of an endangered seabird. Biological Conservation 155:39-43.

Mänd R, Tilgar V, Lõhmus A, Leivits A. 2005. Providing nest boxes for hole-nesting birds - does habitat matter? Biodiversity and Conservation 14:1823-1840.

Martin TE, Boyce AJ, Fierro‐Calderón K, Mitchell AE, Armstad CE, Mouton JC, Bin Soudi EE. 2017. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Functional Ecology 31:1231-1240.

Maziarz M, Broughton RK, Wesołowski T. 2017. Microclimate in tree cavities and nest-boxes: implications for hole-nesting birds. Forest Ecology and Management 389:306-313.

McCafferty DJ, Gallon S, Nord A. 2015. Challenges of measuring body temperatures of free ranging birds and mammals. Animal Biotelemetry 3:1-10.

McComb WC, Noble RE. 1981. Microclimates of nest boxes and natural cavities in bottomland hardwoods. Journal of Wildlife Management 45:284-289.

McKechnie E, Rushworth IA, Myburgh F, Cunningham SJ. 2021. Mortality among birds and bats during an extreme heat event in eastern South Africa. Austral Ecology 46:687-691.

Mesa MG, Weiland LK, Wagner P. 2002. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook Salmon. Northwest Science 76:118-128.

Mishra V, Ganguly AR, Nijssen B, Lettenmaier DP. 2015. Changes in observed climate extremes in global urban areas. Environmental Research Letter 10 024005.

Morton ML, Carey C. 1971. Growth and the development of endothermy in the Mountain White-crowned Sparrow (Zonotrichia leucophrys oriantha). Physiological Zoology 44:177-189.

Nagy KA. 2005. Field metabolic rate and body size. Journal of Experimental Biology 208:1621-1625.

Norris AR, Aitken KEH, Martin K, Pokorny S. 2018. Nest boxes increase reproductive output for Tree Swallows in a forest grassland matrix in central British Columbia. PLoS ONE 13:e0204226. https://doi.org/10.1371/journal.pone.0204226

O’Connor RJ. 1975. The influence of brood size upon metabolic rate and body temperature in nestling Blue Tits Parus caeruleus and House Sparrows Passer domesticus. Journal of Zoology 175:391-403.

Pattinson NB, Thompson ML, Griego, MS, Russell G, Mitchell NJ, Martin RO, Wolf BO, Smit B, Cunningham SJ, McKechnie AE, Hockey PAR. 2020. Heat dissipation behaviour of birds in seasonally hot arid‐zones: are there global patterns? Journal of Avian Biology 51:e02350 https://doi.org/10.1111/jav.02350

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Ranke J. 2015. nlme: linear and nonlinear mixed effects models. R package version 3.1-117. Available at http://CRAN.R-project.org/package=nlme

Purcell KL, Verner J, Oring LW. 1997. A comparison of the breeding ecology of birds nesting in boxes and tree cavities. The Auk 114:646-656.

Rhodes B, O’Donnell C, Jamieson I. 2009. Microclimate of natural cavity nests and its implications for a threatened secondary-cavity-nesting passerine of New Zealand, The South Island Saddleback. The Condor 111:462-469.

Ricklefs RE. 1984. The optimization of growth rate in altricial birds. Ecology 65:1602-1616

Robertson RJ, Rendell WB. 1990. A comparison of the breeding ecology of a secondary cavity nesting bird, the Tree Swallow (Tachycineta bicolor), in nest boxes and tree cavities. Canadian Journal of Zoology 68:1046-1052.

Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. 2022. Fluctuating heat stress during development exposes reproductive costs and putative benefits. Journal of Animal Ecology 91:391-403.

Santillán V, Quitián M, Tinoco BA, Zárate E, Schleuning M, Böhning-Gaese K, Neuschulz EL. 2018. Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE 13:e0196179. https://doi.org/ 10.1371/journal.pone.0196179

Shine R, Kearney M. 2001. Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Functional Ecology 15:282-288.

Strain C, Jones CS, Griffiths SR, Clarke RH. 2020. Spout hollow nest boxes provide a drier and less stable microclimate than natural hollows. Conservation Science and Practice 3:e416. https://doi.org/10.1111/csp2.416

Sudyka J, Di Lecce I, Wojas L, Rowiński P, Szulkin M. 2022. Nest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way. Journal of Avian Biology 2022:e03051. https://doi.org/10.1111/jav.03051

Sudyka J, Di Lecce I, Szulkin M. 2023. Microclimate shifts in nest-boxes and natural cavities throughout reproduction. Journal of Avian Biology 2023:e03000. https://doi.org/10.1111/jav.03000

Vanadzina K, Street SE, Sheard C. 2024. The evolution of enclosed nesting in passerines is shaped by competition, energetic costs, and predation threat. Ornithology 141:ukad048. https://doi.org/10.1093/ornithology/ukad048

Visser GH, Ricklefs RE. 1993. Development of temperature regulation in shorebirds. Physiological Zoology 66:771-792.

Visser GH. 1998. Development of temperature regulation. In: avian growth and development. Pp. 117-156 In Starck JM, RE Ricklefs (eds). Evolution within the altricial-precocial spectrum. Oxford: Oxford University Press.

Wachob DG. 1996. A microclimate analysis of nest-site selection by Mountain Chickadee. Journal of Field Ornithology 67:525-533.

Watson CM, Francis GR. 2015. Three-dimensional printing as an effective method of producing anatomically accurate models for studies in thermal ecology. Journal of Thermal Biology 51:42-46.

Xie S, Romero LM, Htut ZW, McWhorter TJ. 2017. Stress responses to heat exposure in three species of Australian desert birds. Physiological and Biochemical Zoology 90:348-358. https://doi.org/10.1086/690484

Publicado

2024-07-23

Cómo citar

Salgado-Amezcua, A. S., Molina Valladares, J. L., Salinas-Melgoza, M. A., Salinas-Melgoza, V., & Salinas Melgoza, A. (2024). ¿Los pollos en el nido del saltapared cola larga (Thryomanes bewickii) experimentan estrés térmico en cajas nido en una ciudad tropical?. Huitzil Revista Mexicana De Ornitologí­a, 25(1), e666. https://doi.org/10.28947/hrmo.2024.25.1.783

Número

Sección

Artículos originales

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.